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Values of the temperature integral (i) of the Arrhenius equation have been
calculated. An approximately linear relationship has been established between log /
and the activation energy and between log i/ and the reciprocal temperature. The
approximate expressions are given and the accuracy of the results obtained using
these expressions is compared with the accuracies achievable using other approxima-
tions in a selected activation energy and temperature range. The applicability of
various approximations is briefly discussed.

INTRODUCTION

Evaluation procedures for the determination of kinetic narameters from data
obtained by thermogravimetric analysis are usually based upon an Arrhenius rela-
tionship

dx

— = Ae ¥R f(x). )
dt

In most cases thermogravimetric measurements are carried out at a constant heating
rate a (=d7/dr). By introducing this term into eqn {1} it becomes
dx A4

Gx _ A -EIRT
T 2 e f(x). (2)

When reaction rates are not directly measurable, parameters such as activation energy,
pre-exponential factor and reaction order are obtained from the integrated form of
eqn (2)

X T
dax _ A f e~ EIKT g, )
of(x) a J1o

In the case of substances which are thermally stable at ambient temperature, values
of the integral on the right-hand side of eqn (3) from T'=0°K to the usual value of
To (i.e. ambient temperature) are negligibly small compared to those between T,
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and the ordinary reaction temperatures. Therefore the boundaries in eqn (3) can be
replaced by 7 =0 and T for such substances.
The integrated form of eqn (3) can be conveniently expressed as

F(x) = 2 {E. T) (4)
a

The temperature integral, 7, has no finite analytical form and, therefore, calculations
based on eqn (4) require either numerically computed, and eventually tabulated,
values of i, or the ase of approximate formulae.

In this paper approximate expressions for the integral previously reported
are examined, and further possibilities for approximation are discussed. The principal
requirements are that the approximation should give accuracy over a wide range of
values for the parameters calculated and that calculations should be easy to perform.

METHOD

The two most significant approximations are those described by Murray and
‘White! and Dovle>. They have been emploved in more recent studies>~®, either
unchanged or in mrodified forms. Integration of the right-hand side of eqn (3) can be
simplified by replacing — E/RT by a single variable. Thus if y= —E'RT, eqn (3)

becomes

-

AE ¥ ¢&°
Feo =22 J_, & 4y (5)

2

- ¥

which, after integration, can be written:
AE
F(x) = —p(y)- (6
aR

The term p()) can be approximated in several ways. Murray and White used the
asymptotic expansion:

, e 21 31 4! A -
P(}')=-:(1+-+—:+—3+---) M
y- y ¥y ¥
If all but the first two terms of the expansion are ignored, this becomes:
2 ” .
i RT? —mr(y —“RT) ®)
E E

Doyle calculated log p(y) values for a wide range of 3 values, and found that within
the limits 20 <] 3| <60 the following approximation applies:

log p(3) = —2315+04567y )
that is

log i = log(E/R)—2.315 — 0.4567(E[/RT) (93)
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We have calculated values of the temperature integral, 7/, corresponding to

30-90 kcal/mole. Some values of log i are shown in Table 1.

TABLE 1
NEGATIVE LOGARITHMS OF THE ARRHENIUS TEMPERATURE INTEGRAL i

TCK) E (kcal 'mole)
30 40 50 60 70 80 90

400 15.3876 20.9709 26.5282 32.0689 37.5979 43.1184 48.6323
500 11.9208 16.3101 20.8740 25.3214 29.7573 34.1847 38.6G57
600 9.5820 13.3317 17.0764 20.7948 24.5019 28.2006 31.8928
700 7.8920 11.1303 14.3439 17.5415 20.7279 23.9059 27.0776
800 6.6101 9.4571 12.2797 15.0866 17.8823 20.6699 23.4511
900 5.6019 8.1443 10.6623 13.1657 15.6575 18.1413 20.6187

There is an approximately linear relationship between log / and reciprocal
temperature and log 7 and activation energy, at constant activation energy and temper-
ature respectively. These correlations can be expressed by the following linear equa-
tions:

logi=B+CE T = constant (10)
logi=Z+Y(1;T) E = constant (an

The correlations were evaluated and the constants were determined using
regression calculations. It was found that slopes and intercepts of eqns (10) and {11)
varied significantly with temperature and activation energy respectively, and that the
parameters B, C, Z, and Y could be expressed as follows:

B = D+ Hlog(1;T) (12)
C = K(1{T)* 13)
Z=P+QlogE (149)
Y = ME¥ (15)

The constants D, H, K, L, P, O, M, and N were calculated using further regression
analysis, and eqns (10) and (11) could now be expressed in a numerical form:

0.980413
log i= 1.955715—1.91591 log <1¥'99) —0.225414 E (&00-) (16)
T T
log i= 3.542051 —0.915784 log E — 0.269645 E®°3%2%? (%) an

where E is in kcalfmole and T in °K.
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CALCULATIONS AND DISCUSSION

Calculations were carried out on a computer and accuracies of both input and
output data were to six decimal places. The temperature integral, /, was calculated
using a Gaussian 32-point integration formula with weights and abscissae to eight
decimal places.

Correlation coefficients for eqns (10) to (15) are shown in Table 2.

TABLE 2
LINEAR CORRELATION COEFFICIENTS OF EQUATIONS RELATING KINETIC

PARAMETERS

Equation Variables Correlation coefficient

10 logi, E —0.999998 to —0.999991
i2 B, log (1000°T) —0.999990

i3 log — C, log (10600/T) +0.999998

11 log i, (1000;T) —0.999969 to —.999996
14 Z, log E —0.999919

i5 log(—Y), log E +0.999980

In order to check the accuracies of eqgns (16) and (17) and the approximations
used by Murray and White! and Doyle?, we calculated log i values corresponding to
the data shown in Table 1 using these equations and approximations. The error
caused by approximation, defined as follows:

logi,., —logi

4 = —=—2PP22 100 (%) (18)
logi,.,

=

is shown in Table 3. This method of error representation has been chosen because
it was found to be more characteristic of the situation than an overall error value
for each method.

Of the approximation methods examined that of Murray and White! gave the
most accurate results. There is, however, a limitation to its use, namely that the
activation energy cannot be derived in an explicit single form. For this reason other
workers>-* have preferred to utilize other relationships or to ignore the variation of
the (1 —2RT/E) term as compared to that of the other terms of eqn (8)°. This latter
treatment naturally decreases the accuracy of the approximation. Results obtained
from egns (16) and (17) and by Doyle’s approximation? are of comparable accuracy.
Between the specified 20<[_r|<60 limits eqn (16) is more, while eqn (17) is less,
satisfactory than equation (9a). However, the error of approximation does not exceed
0.8 per cent when egqns (16) and (17) are used, and is generally considerably smaller.
An advantage of eqns (16) and (17) is that they cover a wider range of E/RT values
than does eqn (9a) without a significant change in accuracy. A disadvantage is that
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their analytical form is more complicated than that of eqn (9a) and, consequently,
they are more difficult to use.

TABLES 3

PERCENTAGE ERROR VALUES USING APPROXIMATION PROCEDURES TO
DETERMINE THE ARRHENIUS TEMPERATURE INTEGRAL i

T (°K) E (kcallmole)

30 40 50 60 70 80 90

A. The method of Murray and White?

400 -0.0114 —0.0047 —0.0024 —0.0015 —0.0009 —0.0006 —0.0004
500 —0.0227 —0.0094 —0.0048 -0.nM)27 - 0.0017 —0.0011 —0.0008
600 —0.0403 —0.0165 —0.0083 —0.0048 —0.0030 —0.0020 —0.00i%
700 —0.0660 —0.0267 —0.0134 —0.0077 —-0.0048 —0.0032 —0.0022
300 —0.1021 —0.0408 —0.0203 —0.01i16 —0.0072 —0.0048 —0.0034
900 —0.i514 —0.0596 —-0.0295 —0.0167 —0.0104 —0.0069 —0.0048
B. The method of Doyle?
400 0.0234 —0.1786 —0.4995 —0.8170 —1.1046 —1.3594 —1.5841
500 —0.1147 0.0073 —-0.1794 —0.4356 —0.6951 —0.9386 —1.1610
600 —0.5503 —0.0067 —0.0129 —0.1801 —0.3930 —0.6116 —0.8214
700 —1.2679 —0.1988 0.0214 —0.0311 —0.1807 —0.5627 —0.5510
800 —2.2690 —0.5575 —0.0635 0.0238 —0.0466 --0.1812 —0.3481
900 —3.5690 —1.0785 -~0.2598 - 0.0068 0.0172 —0.0596 —0.1816
C. The use of equation (16)
400 —0.1590 0.1132 0.1732 0.1604 0.1207 0.0712 0.0195
500 —0.3586 —0.0052 0.0743 0.0609 0.0130 —0.0473 —0.1107
600 —0.4785 —0.0420 0.0559 0.0457 —0.0161 —0.0878 —0.1632
7! —0.5376 —0.0172 0.0969 0.0782 0.0ill —0.0729 —0.1608
800 —0.5454 0.0584 0.1856 0.1609 0.0819 —0.0155 —0.1i69
900 —0.5062 0.1793 0.3153 0.2814 0.1884 0.0761 —0.0397
D. The use of equation (17)
400 0.2704 —0.3248 —0.4145 —0.3310 —0.1717 0.0269 6.2270
500 0.6213 —0.0371 —0.1884 —0.1416 —0.0073 0.1671 0.3593
600 0.7789 0.0552 —0.1192 —0.0832 0.0450 0.2514 0.4046
700 0.7045 —0.0248 —0.1863 —0.1373 0.0015 0.1803 0.3761
800 0.4068 —0.2645 —-0.3772 —0.2923 —0.1271 0.0716 0.2829
900 —0.1168 —0.6585 —0.6846 —0.5409 —0.3338 —0.1040 0.1310

It is not possible to express a simple preference for any one of these approxima-
tions i.e., to answer the question as to which one is the most advantageous to use in a
particular evaluation procedure. The choice will depend on the accuracy required,
since this will decide how rigorous the mathematical treatment needs to be.

Since in most practical cases the approximate value of the activation energy can
be estimated beforehand, it is possible to choose a formula which gives the most
accurate values for this parameter in a given temperature range by using tables like
3B, 3C, and 3D. The approach to the evaluation could involve plotting log F(x)
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against the reciprocal temperature, followed by use of an equation obtained by com-
bining eqn (4) with either eqns (9a) or (17) to interpret the slope of the plot in terms of
activation energy. Alternatively, the last two equations can be used in conjunction
with a plot of log g against the reciprocal temperature, an approach based on a

procedure described by Ozawa®.

From points of identical conversion on thermogravimetric traces obtained at
different heating rates, E can be calculated on the basis of eqns (9a) or (16), thus:

from (9a):

log (a,la,)
(0.4567) ( 11 )
R T, T,

from (16):

log (a-ja,) — 1.91591 log (7,/T7)

0975414 [(1000')0.950413 _ (1000)0.980413]
.22 T

1 T

E =
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